欢迎访问趣读史网!微信公众号:a0668678

数学家希尔伯特生平简介希尔伯特23个数学难题分别是什么?

时间:2019-02-14 16:28:57编辑:桓祯



12、类域的构成问题

即将阿贝尔域上的克罗内克定理推广到任意的代数有理域上去。此问题仅有一些零星结果,离彻底解决还很远。

三、希尔伯特23个数学难题:代数和几何问题

13、一般七次代数方程以二变量连续函数之组合求解的不可能性

14、建立代数几何学的基础

荷兰数学家范德瓦尔登1938年至1940年,魏依1950年已解决。

一个典型的问题是:在三维空间中有四条直线,问有几条直线能和这四条直线都相交?舒伯特给出了一个直观的解法。希尔伯特要求将问题一般化,并给以严格基础。现在已有了一些可计算的方法,它和代数几何学有密切的关系。但严格的基础至今仍未建立。

15、代数曲线和曲面的拓扑研究

此问题前半部涉及代数曲线含有闭的分枝曲线的最大数目。后半部要求讨论备dx/dy=Y/X的极限环的最多个数N(n)和相对位置,其中X、Y是x、y的n次多项式。

对n=2(即二次系统)的情况,1934年福罗献尔得到N(2)≥1;1952年鲍廷得到N(2)≥3;1955年苏联的波德洛夫斯基宣布N(2)≤3,这个曾震动一时的结果,由于其中的若干引理被否定而成疑问。

关于相对位置,中国数学家董金柱、叶彦谦1957年证明了(E2)不超过两串。1957年,中国数学家秦元勋和蒲富金具体给出了n=2的方程具有至少3个成串极限环的实例。

1978年,中国的史松龄在秦元勋、华罗庚的指导下,与王明淑分别举出至少有4个极限环的具体例子。1983年,秦元勋进一步证明了二次系统最多有4个极限环,并且是(1,3)结构,从而最终地解决了二次微分方程的解的结构问题,并为研究希尔伯特第(16)问题提供了新的途径。

16、用全等多面体构造空间

德国数学家比贝尔巴赫(Bieberbach)1910年,莱因哈特(Reinhart)1928年作出部分解决。

数学家希尔伯特生平简介希尔伯特23个数学难题分别是什么?

17、正则变分问题的解是否总是解析函数?

德国数学家伯恩斯坦(Bernrtein,1929)和苏联数学家彼德罗夫斯基(1939)已解决。

18、研究一般边值问题

此问题进展迅速,已成为一个很大的数学分支,目前还在继读发展。

四、希尔伯特23个数学难题:数学分析

19、具有给定奇点和单值群的Fuchs类的线性微分方程解的存在性证明

此问题属线性常微分方程的大范围理论。希尔伯特本人于1905年、勒尔(H.Rohrl)于1957年分别得出重要结果。1970年法国数学家德利涅(Deligne)作出了出色贡献。

20、用自守函数将解析函数单值化

此问题涉及艰深的黎曼曲面理论,1907年克伯(P.Koebe)对一个变量情形已解决而使问题的研究获重要突破。其它方面尚未解决。

21、发展变分学方法的研究

这不是一个明确的数学问题。20世纪变分法有了很大发展。

22、用自守函数将解析函数单值化

此问题涉及艰深的黎曼曲面理论,1907年克伯(P.Koebe)对一个变量情形已解决而使问题的研究获重要突破。其它方面尚未解决。

猜你喜欢